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Abstract

A direct-forcing fictitious domain (DF/FD) method for the simulation of particulate flows is reported. The new method
is a non-Lagrange-multiplier version of our previous DLM/FD code and is obtained by employing a discrete d-function in
the form of bi(tri-) function to transfer explicitly quantities between the Eulerian and Lagrangian nodes, as in the immersed
boundary method. Due to the use of the collocation-point approach for the rigidity constraint and the integration over the
particle domain, the Lagrangian nodes are retracted a little from the particle boundary. Our method in case of a prescribed
velocity on the boundary is verified via the comparison to the benchmark results on the flow over a fixed cylinder in a wide
channel and to our spectral-element results for a channel with the width of four cylinder diameters. We then verify our new
method for the case of the particulate flows through various typical flow situations, including the sedimentation of a cir-
cular particle in a vertical channel, the sedimentation of a sphere in a vertical pipe, the inertial migration of a sphere in a
circular Poiseuille flow, the behavior of a neutrally-buoyant sphere in Couette flow, and the rotation of a prolate spheroid
in Couette flow. The accuracy and robustness of the new method are fully demonstrated, in particular for the case of rel-
atively low Reynolds numbers and the neutrally-buoyant case.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The non-boundary-fitted (or Cartesian grid) method has become increasingly popular for the solution of
the fluid flow problems in a complex geometry or with moving boundaries. A variety of non-boundary-fitted
approaches have been developed, and they can be roughly classified into two families [1,2]: the body-force
based method (e.g., [3–13]) and the non-body-force based method (e.g., [2,14–17]). For the former, a body-
force (or momentum forcing) is introduced into the momentum equation. The fractional step scheme is often
used in the body-force based methods to simplify the computation in the following way: the Navier–Stokes
equations are solved for the known body-force obtained at the previous time level, with the boundary condi-
tion on the immersed boundary disregarded, and subsequently the boundary condition is used to determine
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the body-force. There exist various body-force based methods in the literature that differ in the way the body-
force is calculated. For example, for the Lagrange-multiplier based fictitious domain method (e.g. [3–7]), the
body-force is introduced as a Lagrange multiplier in a weak formulation, and solved from the boundary con-
dition in an iterative way. For the elastic-force based immersed boundary method (e.g., [8–10]), the boundary
(or the body) moves with the local fluid and the body-force is explicitly calculated from the displacement or
deformation of the boundary (large stiffness constant as an approximation to the rigid-boundary problems).
For the direct-forcing based immersed boundary method (e.g. [11–13]), the body-force is computed explicitly
from the boundary condition in two typical manners: for one [11], the body-force is defined at the Lagrangian
points on the boundary, and a discrete d-function is used to interpolate the fluid velocity from the Eulerian
nodes to the Lagrangian nodes for the calculation of the body-force and then to distribute the body-force from
the Lagrangian nodes to the Eulerian nodes for the solution of the fluid momentum equation; for the other,
the body-force is directly defined at the Eulerian nodes located in the immediate vicinity of the boundary in
either the real fluid region [12] or the fictitious domain [13] (thus there is no need for the transfer of the body-
force), and the target velocities at the forcing points for the calculation of the body-force is obtained by inter-
polation of the prescribed velocity at the boundary and other fluid velocities at the Eulerian nodes. Unlike the
body-force based method, the non-body-force based method does not introduce a body-force, instead, it
accounts for the boundary condition by either transforming it into independent equations [14] or using it
to modify the expressions of differential operators for the Eulerian nodes in the immediate vicinity of the
boundary ([15–17]). One advantage of the non-body-force based method is that the jump boundary conditions
on the surface can be conveniently handled.

We are concerned with the simulation of particulate flows (fluid–structure interactions) in the present study.
In principle, all aforementioned methods can be applied to the particulate flows, however, the body-force
based method has been predominantly used so far. A common feature for the body-force based method is that
the hydrodynamic force on the particles can be calculated from the body-force and is not necessary to be
explicitly computed in order to determine the particle velocities. For the distributed-Lagrange-multiplier/fic-
titious-domain (DLM/FD) method proposed by Glowinski et al. [5], the particle velocities and the body-force
(Lagrange multiplier) are solved together with the implicit scheme, while for the immersed boundary method
(e.g., [11–13]), they are obtained explicitly. The DLM/FD method has been successfully applied to a wide
range of particulate flow problems (e.g., [6,18–22]). However, its calculation of the particle velocity and
body-force is a little more involved and expensive compared to the direct-forcing immersed boundary (DF/
IB) method. The aim of the present study is to present a non-Lagrange-multiplier version of our previous
DLM/FD code without sacrificing the accuracy and robustness by employing a discrete d-function in the form
of bi(tri-) function to transfer explicitly quantities between the Eulerian and Lagrangian nodes, as in the
immersed boundary method. In our previous DLM/FD code, the bi(tri)-linear function is actually already
used to interpolate the quantities from the Eulerian nodes to the Lagrangian nodes and to distribute the
body-force from the Lagrangian nodes to the Eulerian nodes, however, it is not defined as a discrete d-function
to explicitly transfer (or equate) the quantities between the two frames, and therefore the body-force needs to
be determined implicitly from the constraint of the velocities in the two frames being equal in the solid domain
or on the boundary. For convenience, we refer to our new method as direct-forcing fictitious domain (DF/FD)
method, since on one hand it is resulted from a modification over our previous DLM/FD code and on the
other hand it deals with the body-force in essentially the same way as the DF/IB method. Compared to the
DF/IB method for the particulate flows proposed by Uhlmann [11], in which the body-force is only distributed
on the particle boundary, our body-force is distributed over the particle inner domain for the constraint that
all inner fluids move as a rigid-body so that the time acceleration term of the inner fluids involved in the
calculation of the hydrodynamic torque on the particles does not need to be calculated explicitly, thus
circumventing the difficulty in dealing with the nearly neutrally-buoyant case in [11]. We note that other
non-Lagrange-multiplier versions of the FD method have been developed by Sharma and Patankar [23]
and Veeramani et al. [24]. Compared to these two methods, our method has the same feature that the
constraint of the rigid-body motion for the inner fluids is used to derive an explicit expression for the particle
velocities, but the form of the explicit expression and the computational schemes used are different.

The rest of the paper is organized as follows: we describe the new scheme for the explicit solution of the
particle velocities and the body-force in detail in the following section. In Section 3, we first validate the
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method in case of prescribed velocity on the immersed boundary via the benchmark problem of the flow over a
fixed cylinder, and it is shown that for the case of the singular body-force distributed only on the boundary the
discrete nominal support area for the body-force is not important to the results and the Lagrangian nodes
should be retracted a little from the boundary if one wants to use the body-force to calculate the hydrody-
namic force on the body. We then verify our new method for the case of the particulate flows through various
typical flow situations, including the sedimentation of a circular particle in a vertical channel, the sedimenta-
tion of a sphere in a vertical pipe, the inertial migration of a sphere in circular Poiseuille flow, the behavior of a
neutrally-buoyant sphere in Couette flow, and the rotation of a prolate spheroid in Couette flow. Concluding
remarks are given in the final section.

2. Numerical model

The method proposed in the present study is an improved version of our DLM/FD code, and only differs in
that the Lagrange multiplier (i.e., body-force or momentum forcing) and particle velocities are solved in a non-
iterative way. Hence, the description of the new algorithm can be started from the DLM/FD formulation pro-
posed by Glowinski et al. [5]. However, we will derive the new algorithm directly from the primitive governing
equations, since such a derivation is straightforward and can make the entire algorithm involve less mathemat-
ics by getting rid of the concept of weak formulation.

For simplicity of description, only one particle is considered. Let P(t) and oP(t) represent the solid domain
and its boundary, Xf the real fluid region, and X the entire domain comprising both interior and exterior of the
body.

2.1. Fictitious domain formulation

The momentum equation for the fluid flow is
qf
du

dt
¼ r � r in Xf ; ð1Þ
where qf is the fluid density, u the fluid velocity, and r the fluid stress. Only the Newtonian fluid is considered
in this study, thus r = �pI + 2lD, here p being the fluid pressure, l the viscosity and D the rate-of-strain
tensor.

The motion of the rigid particle is governed by Newton’s equation of motion as follows:
M
dU

dt
¼ FH þ 1� 1

qr

� �
Mg; ð2Þ

dðJ � xsÞ
dt

¼ TH; ð3Þ
where M, J, U, and xs are the particle mass, moment of inertia tensor, translational velocity and angular
velocity, respectively. g is the gravitational acceleration, and qr is the solid–fluid density ratio. FH and TH

are the hydrodynamic force and torque on the particle, respectively, defined by
FH ¼
Z

oP
n � rds; ð4Þ

TH ¼
Z

oP
r� ðn � rÞds; ð5Þ
where n is the unit outward normal on the particle surface and r is the position vector with respect to the par-
ticle mass center. Note that the gravity term is not considered in (1), which has no effect on the flow, but can
produces a hydrostatic pressure and thereby a buoyance force on the particle. Since the buoyance force is not
included in FH, we need to include it directly in (2).

As in the DLM/FD method, the interior of the particle is filled with the fluid and a pseudo body-force is
introduced over the particle inner domain to enforce the fictitious fluid to satisfy the rigid-body motion con-
straint, namely, the following equations are introduced for the interior of the particle:
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qf
du

dt
¼ r � rþ k in PðtÞ; ð6Þ

u ¼Uþ xs � r in P ðtÞ; ð7Þ
where k is the pseudo body-force. Integrating (6) and r· (6) over the particle interior P(t) and substituting into
Eqs. (4), (5) and (7) yields, respectively,
FH ¼ �
Z

P
kdxþM

qr

dU

dt
; ð8Þ
and
TH ¼ �
Z

P
r� kdxþ 1

qr

dðJ � xsÞ
dt

: ð9Þ
Substituting (8) into (2), and (9) into (3) gives, respectively,
1� 1

qr

� �
M

dU

dt
� g

� �
¼ �

Z
P

kdx; ð10Þ

1� 1

qr

� �
dðJ � xsÞ

dt
¼ �

Z
P

r� kdx: ð11Þ
We see that (1), (6), (7), (10) and (11) are simply the strong-form counterparts of the DLM/FD combined
momentum equations in the weak form derived by Glowinski et al. We also note that Diaz-Goano et al.
[25] have conducted a similar derivation and obtained essentially the same formulation as above.

The governing equations can be non-dimensionlized by introducing the following scales: Lc for length, Uc

for velocity, Lc/Uc for time, qf U 2
c for the pressure p and qf U 2

c=Lc for the pseudo body-force. For convenience,
we write the dimensionless quantities in the same form as their dimensional counterparts, unless otherwise
specified. The dimensionless equations for the incompressible fluid can be written as follows:
ou

ot
þ u � ru ¼ r

2u

Re
�rp þ k in X; ð12Þ

u ¼ Uþ xs � r in P ðtÞ; ð13Þ
r � u ¼ 0 in X; ð14Þ

ðqr � 1ÞV �p
dU

dt
� Fr

g

g

� �
¼ �

Z
P

kdx; ð15Þ

ðqr � 1Þ dðJ
� � xsÞ
d

¼ �
Z

P
r� kdx: ð16Þ
In the above equations, Re represents the Reynolds number defined by Re ¼ qf UcLc

l , Fr the Froude number de-
fined by Fr ¼ gLc

U2
c
; V �p the dimensionless particle volume define by V �p ¼ M

qsLd
c
; and J* the dimensionless moment

of inertia tensor defined by J� ¼ J

qsLdþ2
c

, here qs being the particle density and d being the dimensionality of the
problem involved. Note that the pseudo body-force k in (12) is defined in the solid domain P(t).

2.2. Direct forcing scheme

2.2.1. Fractional-step time scheme

As in the DLM/FD method, a fractional-step time scheme is used to decouple the combined system (12)–
(16) into two subproblems:

Fluid subproblem for u* and p:
u� � un

Dt
�r

2u�

2Re
¼ �rp � 1

2
½3ðu � ruÞn � ðu � ruÞn�1� þ r

2un

2Re
þ kn; ð17Þ

r � u� ¼ 0: ð18Þ
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Particle subproblem for Un+1, xn+1, un+1 and kn+1:
unþ1 � u�

Dt
¼ knþ1 � kn; ð19Þ

unþ1 ¼ Unþ1 þ xnþ1
s � r; ð20Þ

ðqr � 1ÞV �p
Unþ1 �Un

Dt
� Fr

g

g

� �
¼ �

Z
P

knþ1 dx; ð21Þ

ðqr � 1Þ J� � ðxnþ1
s � xn

s Þ
Dt

þ xn
s � ðJ

� � xn
s Þ

� �
¼ �

Z
P

r� knþ1 dx: ð22Þ
The fluid subproblem (17)–(18) is a standard Navier–Stokes problem. The reader is referred to [7] (for 2D) and
[21] (for 3D) for the detailed description of our solver, a finite-difference-based projection method on a half-
staggered grid. The resulting Poisson equation for the pressure is solved with a FFT based fast solver.

2.2.2. Solution of the particle subproblem

The difficulty in the particle problem (19)–(22) comes from the fact that the fluid velocity is defined at the
structured Eulerian nodes, whereas the surface of the particle needs to be described with the Lagrangian nodes
that normally does not coincide with the Eulerian nodes, and consequently it is not straightforward how to
solve the equations involving both Eulerian and Lagrangian quantities such as (19) and (20). In the previous
DLM/FD works (e.g., [5,21]), the particle problem (19)–(22) is formulated in a weak form and then becomes a
saddle-point problem, which is solved with Uzawa iteration. The d-function is often used to discretize the
Lagrange multiplier, resulting in the collocation-point method to enforce the rigidity constraint (or Dirichlet
boundary condition) (e.g., [4,5]). In fact, if we use the d-function to transfer a quantity between the Eulerian
and Lagrangian frames explicitly as in the immersed boundary method, a non-iterative scheme for the solution
of (19)–(22) can be easily devised. In the present study, we adopt the linear function (bi-linear for 2D and tri-
linear for 3D) as a discrete approximation to the d-function. For the case of 3D, the discrete d-function is
defined by
dhðrÞ ¼ dhðrxÞ � dhðryÞ � dhðrzÞ; ð23Þ
where rx, ry and rz denote the components of r, and dh(r) is defined by
dhðrÞ ¼
1� r

h

�� �� for jrj < h;

0 otherwise;

(
ð24Þ
in which h is the mesh-size of the homogeneous Eulerian (or Cartesian) grid. Using the discrete d-function, we
can transfer a discrete quantity f between the Eulerian (xi) and Lagrangian (Xl) frames as follows:
fE!L : fLðXlÞ ¼
X

i

fEðxiÞdhðxi � XlÞ; ð25Þ

fL!E : fEðxiÞ ¼
X

l

fLðXlÞdhðxi � XlÞDV �l ; ð26Þ
where fE(xi) and fL(Xl) represent the values of f at the Eulerian nodes xi and at the Lagrangian nodes Xl,
respectively, and DV �l is the ratio of the size of the control volume for each Lagrangian node (DVl) to hd, d

being the dimensionality. In the present study, for the case of f being defined throughout the body P(t), we
use the rectangular rule for the integration and assume that each Lagrangian node has the same integration
volume, so that DV l ¼

V �
P

N , N being the number of the Lagrangian nodes for P(t). For the case of f being defined
at the immersed boundary, it will be shown in our numerical test that Vl can be set to be an arbitrary value as
long as it is not too large to cause instability; DV �l being unity is a good choice, irrespective of the distance
between the Lagrangian nodes.

In the following, we first derive an explicit expression for Un+1 and xn+1 under the assumption that a quan-
tity can be transferred between the Eulerian and Lagrangian frames accurately (or we consider quantities in a
non-discretized space). Substituting (20) into (19) yields
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Unþ1 þ xnþ1
s � r� u�

Dt
¼ knþ1 � kn: ð27Þ
Adding
R

P (27)dx to (21), and
R

P r� (27)dx to (22) gives, respectively,
qrV
�
p

Unþ1

Dt
¼ ðqr � 1ÞV �p

Un

Dt
� Fr

g

g

� �
þ
Z

P

u�

Dt
� kn

� �
dx; ð28Þ

qr

J� � xnþ1

Dt
¼ ðqr � 1Þ J� � xn

s

Dt
� xn

s � ðJ
� � xn

s Þ
� �

þ
Z

P
r� u�

Dt
� kn

� �
dx: ð29Þ
All the right-hand side terms of (28) and (29) are known quantities, so Un+1 and xn+1 are obtained without
iteration. The integration for the last terms in the above equations is performed using the values at the
Lagrangian nodes as follows:
Z

P
f dx ¼

X
l

fLðXlÞDV l ¼
V �P
N

X
l

fLðXlÞ: ð30Þ
Then, kn+1 defined at the Lagrangian nodes can be determined from (27):
knþ1 ¼ Unþ1 þ xnþ1
s � r� u�

Dt
þ kn: ð31Þ
Finally, the fluid velocities un+1 at the Eulerian nodes are determined from (19):
unþ1 ¼ u� þ Dtðknþ1 � knÞL!E ð32Þ

Note that the fluid velocity u is defined at the Eulerian nodes, and the pseudo body-force k is defined at the
Lagrangian nodes. Hence, u* in (28), (29) and (31) need to be interpolated from the Eulerian nodes to the
Lagrangian nodes using (25), and the pseudo body-force in (32) to be distributed from the Lagrangian nodes
to the Eulerian nodes using (26), as marked in (32) with the subscript.

It should be noted that similar explicit expressions for the particle velocities have been derived early by Glo-
winski et al. [6] from an approximation to the DLM/FD formulation (based on essentially the same assump-
tion as the above) in order to avoid the singularity at qr = 1 in the DLM/FD formulation, but the authors
claimed that the results from such an explicit calculation are of worse quality compared to those from the iter-
ative scheme and thus did not present a complete description of the new approach. The same approximation
has also been used by Yu [26] in his work on the DLM/FD method for fluid/flexible-body interactions, fol-
lowed by Shi and Phan-Thien [27]. Eq. (28) is a reduced form of Eq. (54) in Yu [26] in the limiting case of rigid-
body motion.

In case of a prescribed velocity on the boundary, the step (28) and (29) for the calculation of the particle
velocities is not necessary and we start from the second step (31) for the calculation the body-force with the
particle velocity term (Unþ1 þ xnþ1

s � rÞ replaced by the prescribed velocity u0. Substituting the modified (31)
into (17) yields
knþ1 ¼ u0 � un

Dt
� � 1

2
½3ðu � ruÞn � ðu � ruÞn�1� þ ðr

2u� þ r2unÞ
2Re

�rp
� �

;

which is essentially the same as the direct-forcing formulation for the calculation of the body-force ([11–13]),
the reason why we refer to our new method as DF/FD method.

One may set kn in (17) and (19) to be zero, as in Glowinski et al., but it has been shown that the presence of
this term is helpful to reduce the error in the steady solution and allows one to use a significantly larger time
step for low Reynolds number flows [21].

2.2.3. Why bi(tri-) linear function and collocation-point approach?

Two new issues occur when the new scheme (28)–(32) is used as a substitute for the Uzawa iteration in the
original DLM/FD method: what discrete d-function is better chosen to transfer the quantities between the two
frames, and how to calculate the integral terms in (28) and (29)? We have already given our answers in the
description of the new scheme earlier: bi(tri-) linear function and collocation-point method (using the
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rectangular rule with the same integration volume for each Lagrangian node). Two forms for the discrete
d-function have been widely used: Peskin’s discrete d-function [28,11] and bi(tri-) linear function [10,29,30].
The reasons why we choose the bi-(tri-) linear function rather than Peskin’s discrete d-function are:

1. For convenience. The bi(tri-) linear function has been used in our DLM/FD code, and it is particularly sui-
ted to the case of particulate flows, since the particles often move close to the wall, with certain Lagrangian
nodes being located within one Eulerian mesh from the wall, in which case no special treatment is required
for the linear interpolation function.

2. For less computational cost. Clearly, linear interpolation function is computationally cheaper than Peskin’s
high-order interpolation function.

3. For accuracy. Compared to Peskin’s 3-point or 4-point discrete d-function [28], 2-point linear function is
more compact. Accordingly, less overestimation in the drag force on the particle is observed in our numer-
ical tests for the linear function if the Lagrangian nodes are not retracted from the boundary, or a smaller
retraction distance is required to obtain a correct drag force for the linear function.

The role of the discrete d-function is to transfer the quantities between the Lagrangian and Eulerian nodes.
Peskin’s discrete d-function was derived from an analogue to the analytical d-function and originally used to
deal with the case of the quantities being defined on the volumeless boundary. For the case of the quantities
being defined over a domain, the discrete d-function actually serves as a mutual interpolation function. It is
clear that the linear interpolation function works well for the interpolation of the quantities from the homo-
geneously distributed Eulerian nodes to the Lagrangian nodes, but not clear if it can work for the interpola-
tion from the inhomogeneously distributed Lagrangian nodes to the Eulerian nodes. Suppose that a quantity
is unity for all Lagrangian nodes in an infinitely large domain, then an ideal discrete d-function is expected to
produce the value of unity for each Eulerian node. For simplicity, we inspect the case of 1D and the Lagrang-
ian nodes being homogeneously distributed. Assume that the spacing for the Eulerian and Lagrangian nodes is
h and h(1 + n), respectively, and at point ‘0’, the Eulerian and Lagrangian nodes coincide with each other.
Then, from (26), we obtain the Eulerian value of (1 + n) at point ‘0’, (1 � n2) at points ‘1’ to ‘1/n’, and
(1 + n) again at point ‘1/n + 1’, another coincident point. It can be easily verified that the average value of
the obtained Eulerian quantity is unity, being equal to the Lagrangian one, however, the oscillation of the
Eulerian values is obvious, which is severe if n is not small. Note that such an oscillation occurs for the case
of the homogeneously distributed Lagrangian nodes. In fact, it is normally impossible to homogeneously dis-
tribute the nodes over a body with curved boundaries. If one assumes the same integration volume for each
Lagrangian node, as in the present study, it is clear that the Eulerian values are larger at the places where the
distribution density of the Lagrangian nodes is higher and smaller where the distribution density is lower,
resulting in an oscillation again. This second type of oscillation can be alleviated if the individual different inte-
gration volume for each Lagrangian node is taken into account, but is difficult to remove due to the inherent
difficulty in messless interpolation, for any discrete d-function, whether Peskin’s or linear function.

The above analysis shows the shortcoming of the bi(tri-) linear function as a discrete d-function: it cannot
transfer the quantities from the Lagrangian nodes to the Eulerian nodes smoothly. Indeed, when we directly
used the bi-linear function to transfer the Lagrangian velocity Unþ1 þ xnþ1

s � r to the Eulerian velocity un+1,
instead of (32), we found that the code broke down after running only a few time steps. Then why does (32)
work? Substituting (31) into (32) yields
unþ1
E ¼ ðUnþ1 þ xnþ1

s � rÞL!E � ðu�E!L!E � u�EÞ: ð33Þ

We see that there exists a correction term ðu�E!L!E � u�EÞ, which effectively cancels the oscillation in the
ðUnþ1 þ xnþ1

s � rÞL!E and results in a smooth solution un+1 in the solid domain, due to the fact that u* is close
to un+1 with the difference of O(Dt) (being equal to each other at steady state), as seen from (32).

The collocation-point approach has been widely used in the DLM/FD method (e.g., [4,5,19]). In this
approach, the constraint of the rigid-body motion is enforced for each collocation point, and accordingly
the Lagrangian multiplier (body-force) is also defined on the collocation points and determined from the
rigidity constraint. For the present DF/FD method, we employ the same approach for the rigidity constraint.
In addition, the collocation (i.e., Lagrangian) points are not only used for the rigidity constraint, but also for
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the discretization of integrals over the interior of the particle. It has been shown that in the collocation-point
approach, the collocation points need to be retracted slightly from the particle surface to avoid the overes-
timation of the hydrodynamic drag on the particle [10,21]. This overestimation was explained by the fact that
the collocation points on the particle surface affect the fluid velocities outside the particle and thus effectively
increase the particle size [10]. Not surprisingly, the retraction of the Lagrangian points from the particle sur-
face is found also necessary for the present DF/FD method. Moreover, this retraction is now further
required by the accurate integration with the rectangular rule: the optimal integration point for an element
is normally not located on the element boundary, but inside the boundary. In addition, the retraction of the
nodes can be an approach to improve the prediction of the particle velocity in case of a coarse mesh, as com-
monly used in the lattice-Boltzmann method [31]. Note that the retraction is required by the collocation-
point approach, but is not necessary for the collocation-element method [7,21] or other specific integration
procedures [24].

Besides the collocation-point approach, we have tested an alternative integration method in the problem of
the sedimentation of a circular particle: we mesh the solid domain and then perform the integration for all
integrals over the solid domain using the trapezoidal rule. Such a method (meshing and trapezoidal rule) is
definitely more accurate than the collocation-point method (meshless and rectangular rule) for the integration
alone, but we observed a more appreciable spurious oscillation with time in the terminal particle settling veloc-
ity (whatever the form of d-function) compared to the results (Fig. 4) obtained using the collocation-point
method with the node arrangement shown in Fig. 1b. A possible reason is that the Lagrangian nodes in
the meshing method are not distributed as uniformly as in the meshless method, and the distribution homo-
geneity of the points influences significantly the quality of the solution through the discrete d-function and the
number of nodes which are smaller for a given h in case of the meshing method.

The particle volume V �p and moment of inertia tensor J* in (28) and (29) can be given as either analytical
(real) values or evaluated using the numerical integration (30). There is no difference between the calculated
and analytical particle volumes, since the integration volume for each node DVl is given from the real particle
volume. There is slight difference for J*, but our numerical experiments indicate that the effect of the different
choice of J* on the stability and accuracy of the method is negligibly small.
a b

c d

Fig. 1. Arrangements of Lagrangian points in cases of (a) a 2D cylinder with the no-slip condition enforced only on the boundary, (b) a
circular particle, (c) a spherical particle (only the points on one layer is shown), and (d) a prolate spheroid.
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2.2.4. Arrangement of the Lagrangian nodes

The validation tests in the present study involve the circular, spherical and spheroidal particles. Fig. 1
shows the arrangement patterns for the Lagrangian points for all cases studied. We attempt to distribute
the points as homogeneously as possible. For the DLM/FD method, it is better for the spacing of the
Lagrangian nodes to be slightly bigger than that of the Eulerian nodes for the sake of both accuracy and
robustness, as suggested by Glowinksi et al. [5]. This guideline is adopted in the present DF/FD method.

For the circular particle, it is straightforward to distribute the nodes uniformly on the particle boundary as
shown in Fig. 1a, which will be used for the simulation of the flow over a fixed cylinder. Let c denote the rel-
ative distance between the nodes with respect to h, and then the number of the Lagrangian points is set by

N ¼ 2pa
ch

h i
, here a representing the particle radius, and the bracket ‘[ ]’ the operator of taking the integer part.

We typically set c = 1.45, in order to avoid the possibility that there are two collocation nodes in a Cartesian
cell.

For the case of the rigid-body motion constraint being enforced throughout the body of a circular particle,
we distribute the collocation points on the concentric rings as shown in Fig. 1b: one point at the particle center,
and 6i points on the ith ring for i = 1, Na, Na being the number of the rings. Thus the total number of the col-
location points is N = 1 + 3Na(Na + 1). For h = a/8, we find that Na = 6 is a good choice. As mentioned earlier,
the outmost ring needs to be retracted slightly from the particle boundary. Let Da denote the retraction distance.
Numerical tests show that Da = h/3 is a good choice, in particular for the low Reynolds numbers. The optimal
Da is case-dependent, typically ranging from h/4 to h/2 except for a high Re. We note that the concentric
arrangement of the nodes used here has been independently proposed by Yu et al. [19] and Uhlmann [32].

For the spherical particle, the Lagrangian nodes are distributed on the concentric spherical surfaces. On each
surface, the distribution of the nodes is determined using the method suggested by Uhlmann [11]: let a certain
number of point-particles that are confined to the spherical surface move under a mutual repulsive force which
is proportional to the inverse of the square of the inter-particle distance, till the equilibrium configuration is
achieved. The number of the collocation points on ith surface is set to be Nbi2, here Nb being the number of
nodes on the first surface from the particle center. Let Na denote the number of the surfaces, and then the total
number of the collocation nodes for a sphere is N = 1 + NbNa(Na + 1)(2Na + 1)/6. The distribution of 360
nodes on one surface (Nb = 10, i = 6) is shown in Fig. 1c. We suggest Na ¼ a

h� 0:5
� �

, Nb = 8 and Da = h/3
for the relatively low Reynolds numbers. For a relatively high Reynolds number, it is observed that too large
DV �l in (26) can result in a numerical instability, hence, one may need to increase the value of Nb properly.

For the spheroid, the collocation points are located in a sequence of evenly distributed parallel planes that
are perpendicular to the axis of symmetry of the spheroid and their distribution in each plane has the same
pattern as for the circular particle (Fig. 1b). We first determine the number of rings in the equatorial plane
according to the number of the Eulerian grids within an equatorial radius, as for a spherical particle, and then
determine the number of the planes according to the aspect ratio of the spheroid. An example of the node
arrangement is shown in Fig. 1d.

2.2.5. Tracking the particle orientation

The position of the particle X can be determined from the following kinematic equation
dX

dt
¼ U: ð34Þ
For the particle of non-symmetric shape, it is necessary to track its orientation. It has been shown that our
DLM/FD code can successfully deal with the rotation of a spheroid in Couette flow [33]. In the following,
we describe a similar approach for our DF/FD method.

The orientation of a particle is determined from the following equations [34]:
_q1

_q2

_q3

_q4

0
BBB@

1
CCCA ¼ 1

2

q4 �q3 q2 q1

q3 q4 �q1 q2

�q2 q1 q4 q3

�q1 �q2 �q3 q4

0
BBB@

1
CCCA

xx

xy

xz

0

0
BBB@

1
CCCA: ð35Þ
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In (35), q1, q2, q3, q4 are the components of a quaternion, which can be defined in terms of the Euler angles:
q1 ¼ sinðh=2Þ cosðð/� wÞ=2Þ;
q2 ¼ sinðh=2Þ sinðð/� wÞ=2Þ;
q3 ¼ cosðh=2Þ sinðð/þ wÞ=2Þ;
q4 ¼ cosðh=2Þ cosðð/þ wÞ=2Þ:

ð36Þ
xx, xy and xz represent the components of the angular velocity measured in a body-fixed frame. The quater-
nion components are normalized, with Rmq2

m ¼ 1. Both a quaternion and Euler angles can describe the rela-
tionship between the body-fixed frame and the space-fixed frame, however, the Euler angles themselves can
not be determined unambiguously at sin(h) = 0, and consequently are not employed here. With the quater-
nion, the coordinate transformation matrix from the space-fixed frame to the body-fixed frame is
A ¼ 2

q2
1 þ q2

4 � 1
2

q1q2 þ q3q4 q1q3 � q2q4

q1q2 � q3q4 q2
2 þ q2

4 � 1
2

q2q3 þ q1q4

q1q3 þ q2q4 q2q3 � q1q4 q2
3 þ q2

4 � 1
2

0
B@

1
CA: ð37Þ
A is an orthogonal matrix, satisfying A�1 = AT. For the axisymmetric body such as a spheroid, z-axis of a
body-fixed frame alone is able to determine the orientation of the body, and that is 2 q1q3 þ q2q4;ð
q2q3 � q1q4; q

2
3 þ q2

4 � 1
2
Þ in the space-fixed frame.

In our implementation, the fluid velocity u, the particle translational velocity U and the body-force k are
measured in the space-fixed frame, while the particle angular velocity xs and the position vector r are mea-
sured in the body-fixed frame. Therefore, three coordinate transformations are required in the solution of
the particle subproblem (28)–(32): one is for determining P in the space-fixed frame: x = X + A�1 Æ r; one is
to transform u�

Dt � kn	 

in (29) from the space-fixed frame to the body-fixed frame; and the last one is to trans-

form xnþ1
s � r in (31) from the body-fixed frame to the space-fixed frame.

3. Numerical experiments

3.1. Flow over a fixed cylinder

We first validate the method in case of prescribed velocity on the immersed boundary via the benchmark
problem of the flow over a fixed cylinder, considering that our method in this case differs from any previously
reported immersed boundary method in the implementation details regarding the solution of the body-force.
In addition, through this example, we aim to demonstrate that for the case of the singular body-force being
distributed only on the boundary the discrete nominal support area for the body-force is not important to the
results and the Lagrangian nodes should also be retracted a little from the boundary if one wants to use the
body-force to calculate the hydrodynamic force on the body.

For the particulate flows, we distribute the Lagrangian nodes over the particle domain to avoid the explicit
calculation of the unsteady terms in the expressions of the hydrodynamic force and torque. For the case of
prescribed velocity on the boundary, there is no clear advantage from the additional rigidity constraint for
the fictitious domain, therefore we distribute the nodes only on the boundary to enforce the no-slip condition.
In this case, the dimensionless hydrodynamic force is determined from
FH ¼ �
Z

P
kdxþ

Z
P

du

dt
dx: ð38Þ
For the stationary cylinder, the contribution of the unsteady term in (38) is expected to be small, since
the velocity of the fluid inside the cylinder boundary should vanish theoretically due to the zero velocity on
the boundary. Indeed, we found that its contribution to the total hydrodynamic force calculated using the
velocities on the Cartesian grids inside the boundary was less than 1%, which is not zero because of the use
of non-boundary-fitted mesh. The body-force is defined on the volumeless boundary, but we assume that
the body-force at a Lagrangian node has a nominal support area DV, which is used to transfer the body-force
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from the node to the neighboring Cartesian nodes via (26) and to integrate the body-force term in (38) viaR
P kdx ¼

P
kiDV :

It is necessary to examine the effect of the nominal support area DV on the results. The test problem is the
flow over a fixed cylinder located in a channel with the width being 32 cylinder diameters (i.e., W/D = 32) at
Re = 100. A homogeneous normal boundary condition is imposed for the velocities at the outlet of the flow,
and the dimensionless velocities on the other boundaries are set to be unity. Further increase in the channel
width was observed to has an insignificant effect on the drag force exerted on the cylinder. The Eulerian mesh
size is h = a/16, and the spacing of the Lagrangian nodes is Dl = 1.45h. Dt = 0.01. Fig. 2 shows the comparison
of the time developments of the drag and lift coefficients for DV = Dlh and DV = Dlh/2. The results indicate
that the value of DV has a marginal effect on the hydrodynamic force on the cylinder. This is not surprising
since kiDV is introduced into the momentum as a whole to enforce the constraint of the given velocity on the
boundary, and a smaller ki is resulted if a larger DV is used. However, a numerical instability was observed for
a too large DV = 2Dlh. One could simply set DV = h2 (h3 for 3D) for all cases, irrespective of the spacing of the
Lagrangian nodes.

Our drag and lift coefficients and Strouhal numbers are compared to other results in the literature in
Table 1. The effect of the spacing of the Lagrangian nodes on the results is negligible, as seen from the com-
parison between Dl = 1.45 h and Dl = 1.2 h. Lai and Peskin [9] and Uhlmann [11] also used the immersed
boundary method with the forcing points defined on the boundary (but using Peskin’s d-function) and calcu-
lated the drag force using the body-force, and we can see that our drag and lift coefficients are close to theirs. It
has been observed that the value of the drag coefficient obtained in this way is too large compared to most
results in the literature (e.g., Liu et al. with a boundary-fitted method and Le et al. with an immersed interface
method), and the reason remains unclear. We think that one factor is related to the calculation of the hydro-
dynamic force using (38). Eq. (38) requires the support area for the body-force to be distributed inside the
boundary, however, the body-force affects the velocities on both sides of the boundary via the discrete d-func-
tion, and consequently the support area is actually distributed across the boundary rather than inside the
boundary. As a result, the Lagrangian nodes should be retracted a little from the boundary in order to obtain
a correct hydrodynamic force from (38). Such a treatment is of course not necessary if the hydrodynamic force
is not of interest, or it is obtained by computing the stress on the boundary. The result for the retraction dis-
tance Da = h/2 is presented in Table 1, and one can see that the drag and lift coefficients are indeed reduced.

It is hard to assess the accuracy of a method from the comparison to the results in the literature on the flow
over a cylinder in a wide channel, due to the lack of highly accurate solutions and the difference in the geom-
etry and boundary condition treatment. Therefore, we present our spectral-element (SPE) results on the drag
coefficients for a channel with the finite width of W/D = 4, and then compare our DF/FD results to them in
t
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Fig. 2. Comparison of the time developments of the drag and lift coefficients for the flow over a cylinder at two different nominal support
areas for the body-force. Re = 100, W/D = 32, h = D/16, Dt = 0.01.



Table 1
Comparison of the drag and lift coefficients for the flow over a cylinder in a wide channel at Re = 100

Cd Cl St

Present results; Dl = 1.45h 1.432 ± 0.010 ±0.332 0.171
Present results; Dl = 1.2h 1.431 ± 0.010 ±0.331 0.171
Present results; Da = h/2 1.394 ± 0.009 ±0.316 0.174
Uhlmann [11] 1.453 ± 0.011 ±0.339 0.169
Lai and Peskin [9] 1.447± ±0.330 0.165
Liu et al. [35] 1.350 ± 0.012 ±0.339 0.165
Le et al. [15] 1.37 ±0.009 ±0.323 0.160
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order to assess the accuracy of the method and further support the argument that the Lagrangian nodes
should be retracted to obtain a more accurate hydrodynamic force. For our spectral-element code, the 8th-
order Legendre polynomial is used as the shape function for both velocity and pressure. The same projection
scheme as used for the present DF/FD method [21] is employed for the temporal discretization. The reader is
referred to [36,37] for the details on the SPE method. The spectral-element mesh in the vicinity of the cylinder
is shown in Fig. 3. Both SPE and DF/FD results are presented in Table 2. Unfortunately, we observed the
spurious pressure oscillation in our SPE simulations for Re = 100 and 200, thus, the drag coefficients at these
two Reynolds numbers are not provided. We are not clear about the reason for the spurious pressure oscil-
lation and postpone the improvement on the SPE code for high Re to a future study.

From Table 2, the relative errors in the drag coefficients Cd obtained using the present DF/FD method with
h = a/8 and no retraction (M1) for Re = 0.5–40 are 3.3–3.8% compared to the SPE results. The relative errors
are reduced to 0.18–0.23% by just retracting the points h/4 distance from the cylinder boundary (M1c1), which
are smaller than those (1.5–1.8%) by decreasing the mesh size to h = a/16 (M2), and (0.74–0.91%) to h = a/32
(M3). The optimal retraction distance Da for this problem is between h/5 and h/4, being shifted closer to h/5 as
h is decreased to h = a/32. The maximal relative error for the case of M3c2 (h = a/32, Da = h/5) is below
0.07%.

The drag coefficients for Re = 100 and 200 in Table 2 are the average values. In case of M3c2,
(Cd, Cl, St) = (2.024 ± 0.017, ± 0.5849,0.230) for Re = 100 and (Cd, Cl, St) = (1.866 ± 0.076, ± 1.058,0.245)
for Re = 200.

3.2. Sedimentation of a circular particle in a channel

Throughout the present study, the results are computed and presented in the dimensionless form, thus we
need to define the characteristic velocity and length for each case. For low Reynolds numbers, there exists an
analytical expression for the drag force on a circular particle settling in a channel at the velocity U:
Fig. 3. Spectral-element (SPE) mesh in the vicinity of the cylinder for the flow over a stationary cylinder in a channel. The pressure
contours for Re = 40 are also plotted.



Table 2
Drag coefficients Cd for the flow over a cylinder in a channel of W/D = 4 at different Re obtained using the spectral-element method and
the DF/FD method with different mesh sizes: M1(h = a/8, D a = 0), M1c1(h = a/8, Da = h/4), M2(h = a/16, Da = 0), M2c1(h = a/16,
Da = h/4), M2c2(h = a/16, Da = h/5), M3(h = a/32, Da = 0) and M3c2(h = a/32, Da = h/5)

Re SPE M1 M1c1 M2 M2c1 M2c2 M3 M3c2

0.5 87.95 91.28 87.78 89.51 87.76 88.12 88.75 87.99
1 44.16 45.82 44.07 44.94 44.06 44.25 44.56 44.19
5 9.754 10.10 9.733 9.915 9.733 9.772 9.837 9.759

10 5.749 5.942 5.736 5.839 5.738 5.759 5.795 5.751
20 3.756 3.882 3.748 3.813 3.749 3.762 3.785 3.756
40 2.682 2.778 2.677 2.723 2.676 2.682 2.702 2.681

100 2.119 2.007 2.059 2.021 2.030 2.042 2.024
200 1.964 1.785 1.905 1.862 1.873 1.888 1.866
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F d ¼ 4pKlU ; ð39Þ

where K is a constant related to the effect of the channel width on the drag force and can be expressed in terms
of the ratio of the channel width to the particle diameter W* (i.e., W/D) [38]:
K ¼ 1

ln W � � 0:9157þ 1:7244=ðW �Þ2 � 1:7302=ðW �Þ4 þ 2:4056=ðW �Þ6 � 4:5913=ðW �Þ8
: ð40Þ
By taking the characteristic velocity Uc as
U c ¼
pD2

4
ðqs � qf Þg
4pKl

¼ D2

16Kl
ðqs � qf Þg; ð41Þ
the dimensionless terminal settling velocity is expected to be unity. The characteristic length is the particle
diameter. We take the Reynolds number Re and the density ratio qr as the independent dimensionless control
parameters, and then the Froude number Fr is not independent and can be expressed in terms of Re and qr as
follows:
Fr ¼ 16K
ðqr � 1ÞRe

: ð42Þ
For the case of a relatively strong inertial effect, we take the characteristic velocity Uc as
U c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2

4
ðqs � qf Þg

qf D
2

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD
2
ðqr � 1Þg

r
; ð43Þ
so that one can conveniently obtain the standard drag coefficient Cd from Cd ¼ 1=ðU �TÞ
2, here U �T being the

computed dimensionless terminal settling velocity. Another advantage of this non-dimensionlization scheme
is that U �T is always not far away from unity. The Froude number in this case becomes
Fr ¼ 2

pðqr � 1Þ : ð44Þ
We will consider the sedimentation of a circular particle in a vertical channel at Re = 0.1 and 200, respectively.
The characteristic velocity is defined by (41) for Re = 0.1 and (43) for Re = 200. The particle is released at the
center of the channel. Fig. 4a shows the time developments of the settling velocities at Dt = 0.001,0.0005 and
0.0002 for Re = 0.1, W/D = 4 and h = a/8, and the results exhibit a satisfactory time-step independence. Using
Dt = 0.001, the simulation of the acceleration process from zero velocity to the steady-state velocity only re-
quires less than 100 time steps. Fig. 4b shows the time developments of the settling velocities at different num-
bers of Lagrangian nodes: Na = 5,6 and 7. We see that the effect of the number of Lagrangian nodes is
insignificant, and the settling velocity decreases slightly with increasing number of nodes for a given h.
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Fig. 4. Time developments of the settling velocities of a circular particle in a vertical channel of W/D = 4 at (a) different time-steps and (b)
different numbers of Lagrangian nodes. Re = 0.1, qr = 1.2, h = a/8, Da = h/3. For (a) Na = 6. For (b) Dt = 0.0005.

Z. Yu, X. Shao / Journal of Computational Physics 227 (2007) 292–314 305
Figs. 5a and 5b plot the time developments of the settling velocities at different retraction distances for
h = a/8 and a/16, respectively. For h = a/8, the optimal Da is around h/3, and the maximal relative errors
in the terminal settling velocities for h/4 6 Da 6 h/2 are below 1.5% compared to the analytical solution. This
optimal value of Da is larger than that for the body-force being located only on the boundary (recall that it is
around h/4 for h = a/8). The optimal Da/h is also reduced as h is decreased in the present case, being around 1/
4 for h = a/16, as shown in Fig. 5b.

The results on the effect of the retraction on the sedimentation velocity at W/D = 16 and at Re = 200 are
presented in Fig. 6ab. It is seen that the effect becomes more insignificant for a wider channel or a higher Rey-
nolds number. There is no oscillation in the settling velocities for Re = 200 in Fig. 6b, because the expected
vortex shedding has not taken place by the end of the simulation.

For a non-symmetric particle, the collocation points change positions as the particle rotates. However, for a
circular or spherical particle, we may or may not let the points move with the rotation of the particle. The
trajectories of a circular particle released at the lateral position of one particle diameter away from the wall
at Re = 200 obtained with and without the rotation of the points are compared in Fig. 7, and one can see that
the difference is insignificant. Hence, we will not consider the rotation of the collocation points for the spher-
ical particle below. The result obtained using the DLM/FD code with the collocation-point method and the
same node arrangement is also compared in Fig. 7. It is encouraging to find that the results from the two meth-
ods are in excellent agreement with each other, as actually for all cases we tested, including the example of the
migration velocity of a sphere in a pipe, as shown in Fig. 10. Therefore, our DF/FD method is equally accu-
rate as the DLM/FD method.
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Fig. 5. Time developments of the settling velocities of a circular particle in a vertical channel of W/D = 4 at different retraction distances
for (a) h = a/8, Na = 6 and (b) h = a/16, Na = 12. Re = 0.1, qr = 1.2, Dt = 0.0005.
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3.3. Sedimentation of a spherical particle in a vertical pipe

We take the sphere diameter as the characteristic length, and define the characteristic velocity Uc by
U c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a
3
ðqr � 1Þg

r
ð45Þ
so that
CD ¼
4pa3

3
ðqs � qf Þg
pa2qf U2

T

2

¼ U 2
c

U 2
T

¼ 1

ðU �TÞ
2
; ð46Þ
and
N D ¼
4ðqs � qf Þgð2aÞ3qf

3l2
¼ Re2; ð47Þ
where UT and U �T are the dimensional and dimensionless terminal sedimenting velocity, respectively, and ND is
sometimes called the ‘‘Best number’’ [39]. The Froude number in this case becomes
Fr ¼ 3

4ðqr � 1Þ : ð48Þ
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The Reynolds number ReT, which is based on the terminal settling velocity, can be calculated by using
Fig. 8.
Dt = 0
ReT ¼ U �TRe: ð49Þ

The fluid-flow problem is posed on a cuboid (rectangular box). An additional body-force is introduced to en-
force the Dirichlet boundary condition on the pipe wall with the new DF/FD scheme instead of the DLM/FD
method. The pipe-particle diameter ratio is 5, and the size of the computational domain is typically
5D · 5D · 25D. To mimic an infinitely long pipe, we shift the flow fields and the particle position upwards
one mesh distance once the particle falls below a vertical position that is 6D higher than the bottom inlet
so that the computational domain looks like moving with the particle.

We have examined earlier the effects of the number of the collocation points and the retraction distance
on the determination of the settling velocity of a circular particle at the low Reynolds numbers in two
dimensions. The qualitatively same results were observed in our numerical tests on the sedimentation of
the spherical particle in a vertical pipe at the low Reynolds numbers, and Da = h/3 is also good in this case.
We now focus on the computations at relatively high Reynolds numbers. Fig. 8 illustrates that the pattern
of the node arrangement does not affect significantly the settling velocity of a spherical particle for a given h

at Re = 100. As mentioned earlier, too large control volume for each collocation point (say, DV* > 2) would
result in the numerical instability at a relatively high Reynold number, so a high Nb is required for a lower
Na.

Fig. 9a shows the time developments of the settling velocity at different Re. The particle is released at the
axis of the pipe. For Re = 300, the vortex shedding takes place and the freely-falling particle will depart from
the tube axis. The result for a sphere at Re = 300 with the lateral velocity constrained to vanish is also plotted
in Fig. 9a. Our results on ReT vs. N 1=3

D are compared to the experimental data [39] for a sphere fixed on the axis
in Fig. 9b. One can see a good agreement for ReT < 100, and an appreciable discrepancy for ReT > 100. Our
ReT is smaller than the experimental one at the same ND (or Re) for ReT > 100, indicating that the drag coef-
ficient is overestimated by our calculation. Recalling that our drag coefficient with Da = h/2 at Re = 100 is still
larger than Liu et al.’s and Le et al.’s in the problem of the flow over a fixed cylinder discussed earlier, it seems
that our DF/FD method is not suited to the simulation of the particle sedimentation for Re > 100. A possible
reason for the poor accuracy at high Re is that the strong discontinuity of some quantities such as the velocity
gradient across the surface is not directly considered for the discretization of the differential operators at the
Eulerian nodes in the immediate vicinity of the boundary in our method, unlike the sharp interface method [2]
or immersed interface method [15]. Nevertheless, it has been shown that the accuracy of our method is satis-
factory for relatively low Reynolds numbers, a Re regime in which we are most interested due to the fact that
the flows of suspensions of small particles typically occur in this Re regime.

Figs. 8 and 9b indicate that it is better to use a fine mesh for the high Reynolds number simulations. How-
ever, because we employ a homogeneous mesh throughout the entire computational domain, the use of a very
fine mesh for R/a = 5 or the computation for a large R/a is beyond our computational resource.
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3.4. Inertial migration of a sphere in circular Poiseuille flow

For the case of a spherical particle moving in Poiseuille flow, we take the initial maximum velocity of the
flow at the centerline of the tube Um and the particle radius R as the characteristic velocity and length, respec-
tively. The Reynolds number based on them is the tube Reynolds number Ret. A dimensionless parameter kf is
defined by [40]
kf ¼
U f

U m

; ð50Þ
where Uf is the Stokes free-fall velocity of a sphere, i.e., Uf = 4a2(qs � qf)g/18l. The Froude number for the
non-neutrally-buoyant case has the form:
Fr ¼ 9kf

2ðqr � 1Þða=RÞ2Ret

: ð51Þ
The periodic boundary condition is imposed on the streamwise direction, and we fix the dimensionless addi-
tional pressure gradient to be (�4/Ret), the value required for just sustaining the steady circular Poiseuille flow
of Newtonian fluids. For a single neutrally-buoyant or slightly denser particle, the flow flux and thereby the
tube Reynolds number change only slightly during the simulations.

Fig. 10 displays our results on the radial migration velocities vs. radial position for a neutrally-buoyant
sphere at (Ret, a/R) = (100, 0.25) and a denser sphere in downward Poiseuille flow at (Ret, kf, a/
R, qr) = (89.8, 0.0674, 0.09, 1.01). Yu et al. [20] investigated numerically the radial migration of a spherical
particle in Poiseuille flow using the DLM/FD method, and the results for the corresponding cases are also
plotted in Fig. 10 for comparison. Because a different time discretization scheme (without keeping kn in the
momentum equation) and space scheme (collocation-element) were used for the body-force in Yu et al., there
are slight discrepancies between the previous DLM/FD and present DF/FD results, as shown in Fig. 10.
When the same discretization schemes are used for the body-force, the results obtained with the DLM/FD
and DF/FD methods are in good agreement with each other. For the DLM/FD method, the radial velocity
from iteration is of poor quality, being oscillatory with time. By contrast, the solution from the DF/FD
method is much smoother, as illustrated in Fig. 10.

From Fig. 10, our migration velocities agree well with the experimental results of Jeffrey and Pearson [40].
The experimental data are scattered due to the difficulty in measuring such a small radial migration velocity
compared to the mainstream velocity.
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Fig. 11 shows the comparison between the results of Pan and Glowinski [41,42] and ours on the migration
of a neutrally-buoyant sphere. Pan and Glowinski obtained the results using their finite-element-based DLM/
FD code. Dimensional quantities are used in their computations. In the CGS unit system, the density is 1, the
fluid viscosity 1, the maximum velocity 20, the radius of the sphere 0.375, the radius of the tube 2.5, and the
length of the tube 10. From these dimensional quantities and our definition of the characteristic velocity and
length above, we can obtain the dimensionless parameters (Ret, a/R) = (50, 0.15), and one dimensionless time
unit corresponds to 0.125 s. For our computations, Dt = 0.005, and h = a/4.8, which results in the total num-
ber of velocity (or pressure) meshes being 64 · 64 · 128 for the entire computational domain. Further decrease
in the time step was observed to have an insignificant effect on the results. Veeramani et al. [24] compared their
results to those of Pan and Glowinski, and we actually reproduce the data of Pan and Glowinski from [24].
From Fig. 11, one can see that our results are in good agreement with Pan and Glowinski’s. Due to the use of
a sequence of efficient solvers such as the finite-difference-based projection method for the Navier–Stokes
equations, the FFT-based fast solver for the pressure Poisson equation, the ADI scheme for the velocity Helm-
holtz equation [21], and the present non-iterative scheme for the rigidity constraints for the tube wall and the
particle, it takes only about 0.92 s per time-step on a 2.8 GHz INTEL CPU (with the INTEL FORTRAN
compiler). The FFT-based fast solver only works for the homogeneous mesh, as in our code, and thus is spe-
cifically suited to the problem of particulate flows (suspension) where a homogeneous mesh is usually
desirable.
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3.5. Rotation of a neutrally-buoyant sphere in Couette flow

A neutrally-buoyant spherical particle suspended at the center of a Couette cell is considered. The shear-
rate is _c, and the cell size is L · L · L. The characteristic length and velocity are the sphere radius a and
a_c, respectively. From (6), one can derive
Z

P
rdx ¼

Z
oP

1

2
ðrr � nþ r � nrÞdx�

Z
P

1

2
qf r

du

dt
þ du

dt
r

� �
dxþ

Z
P

1

2
ðrkþ krÞdx: ð52Þ
Note that r in (52) denotes the stress of the fluid rf, and from the rigidity constraint (7), the stress appearing in
the term on the left-hand side of (52) only has the diagonal pressure part, i.e., r = �pfI, here pf being the pres-
sure of the fictitious fluid inside the particle boundary. On the boundary, the stress of the fictitious fluid is
equal to the one of the real fluid, thus, the first term on the right-hand side of (52) represents the stresslet
S*. From (52),
S� ¼
Z

P

1

2
qf r

du

dt
þ du

dt
r

� �
dx�

Z
P

1

2
ðrkþ krÞdxþ

Z
P
�pf Idx: ð53Þ
From the rigidity constraint, for the case of a spherical particle, one can obtain
Z
P

1

2
qf r

du

dt
þ du

dt
r

� �
dx ¼ Ma2

5qr

ðxsxs � x2
s IÞ: ð54Þ
The last term in (53) is not relevant when we only consider the rheological property of the suspension, i.e., the
viscosity and normal stress differences. Therefore, for a freely-rotating spherical particle in Couette flow, we
have
S�

V l _c/
¼ 1

V pl _c
Ma2

5qr

ðxsxs � x2
s IÞ �

Z
P

1

2
ðrkþ krÞdx

� �
; ð55Þ
where V, Vp and / are the volume of the Couette cell, the volume of the particle and the particle volume frac-
tion, respectively. For convenience, we define S ¼ S�

V l _c/. Note that the quantities in (55) are dimensional. In
terms of dimensionless quantities (recall that k is scaled as qf U 2

c=LcÞ, S can be expressed as
S ¼ Re
5
ðxsxs � x2

s IÞ � Re
V �p

Z
P

1

2
ðrkþ krÞdx: ð56Þ
With the finite-element method, Mikulencak and Morris [43] investigated the free rotation of a spherical par-
ticle in a domain bounded with a outer spherical surface of radius R1, on which the Dirichlet boundary con-
dition is imposed according to the simple shear flow. For our Couette cell, the periodic boundary condition is
imposed on the flow and vorticity directions (see Fig. 13), and only the gradient direction is bounded with two
parallel plates on which the Dirichlet boundary condition is imposed. Our results on the angular velocity and
stresslet of the particle as a function of Re for Re 6 10 at L/(2a) = 7.25 are compared to those of Mikulencak
and Morris [43] in Fig. 12. In our simulations, we let the computation for each case run until t = 30 (i.e., 30
strains), which is long enough to achieve a steady state; we observed that the angular velocity and stresslet
have typically converged to the fifth digit at the end of the simulations. One can see that the two results
are in good agreement with each other. For the stresslet, we adopt the data of Mikulencak and Morris for
R1/a = 7.25. We are not clear about the value of R1/a for the computation of their angular velocities.
The angular velocity is smaller for a bigger bounding domain at a high Reynolds number [43], hence, the dif-
ference in the angular velocity between two results at Re = 10 in Fig. 12a could be reduced if they used a large
R1. Nevertheless, the relative difference at Re = 10 is actually not much, being around 2.4% (the angular
velocity being 4.33 and 4.23, respectively). For our computations, we use Nb = 8 and Da = h/3 for Re < 4,
but Nb = 10 and Da = 0.4h for Re P 4. The reason why we choose Nb = 10 for Re P 4 is that the computation
with Nb = 8 becomes unstable as Re is increased to this level. We accordingly increase the value of Da since in
this way the calculated stresslets for two sets of collocation points are found to match better at Re = 1. The
effect of the node arrangement (e.g., Nb and Da) on the angular velocity is found insignificant.
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3.6. Rotation of a prolate spheroid in Couette flow

The schematic diagram of a spheroid rotating in Couette flow is shown in Fig. 13. The computational
domain is a box with the size of L1 · L2 · L3. Periodic boundary conditions are introduced in the stream-
wise(X) and spanwise(Z) directions. p is the unit vector along the symmetric axis of the spheroid. Define h
as the angle between p and the vorticity(Z)-axis, and u as the angle between the projection of p on the
(X, Y)-plane and the Y-axis, so that
Fig. 13
Period
px ¼ sin h sin u;

py ¼ sin h cos u;

pz ¼ cos h:

ð57Þ
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. Schematic diagram of a spheroid rotating in Couette flow. The computational domain is a box with the size of L1 · L2 · L3.
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We consider the orientation of a neutrally-buoyant prolate spheroid of the symmetry axis length 2a and the
equatorial diameter 2b during its free rotation in the flow. It is known that the orientation of a spheroid in a
simple shear flow of shear-rate _c obeys the Jeffery orbit [44]:
tan u ¼ ar tanðxt þ k0Þ; ð58Þ

tan h ¼ Carffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

r cos2 uþ sin2 u
q ; ð59Þ
where ar is the aspect ratio of the spheroid (i.e., ar = a/b), x = 2p/T, T being the orbit period 2p
_c ar þ 1

ar

� 

, and

the constants k
0

and C are determined from the initial orientation u0 and h0.
We take 2a and 2a _c as the characteristic velocity and length, respectively. For our computations, Re = 0.1,

qr = 1.0, h = b/6.4, Dt = 0.001, u0 = p/2 and h0 = p/4. We set L1/(2a) = L3/(2a) = 2.5, and L2/(2a) = 2.5 for
ar = 2 and 5.0 for ar = 3. The comparison between the calculated orientational orbits and the analytical Jeffery
orbits is shown in Fig. 14. The two results are in remarkably good agreement with each other.

4. Conclusions

We have presented the direct-forcing fictitious domain (DF/FD) method for the simulation of particulate
flows. The new method is a non-Lagrange-multiplier version of our previous DLM/FD code and is obtained
by employing a discrete d-function in the form of bi(tri-) function to transfer explicitly quantities between the
Eulerian and Lagrangian nodes, as in the immersed boundary method. Our method in case of a prescribed
velocity on the boundary is verified via the comparison to the benchmark results on the flow over a fixed cyl-
inder in a wide channel and to our spectral-element results for a channel with the width of four cylinder diam-
eters. It is shown that for the case of the body-force distributed only on the boundary the discrete nominal
support area for the body-force is not important to the results and the Lagrangian nodes should be retracted
a little from the boundary for the calculation of the hydrodynamic force on the body using the body-force.
Our new method for the case of the particulate flows is validated through various typical flow situations,
including the sedimentation of a circular particle in a vertical channel, the sedimentation of a sphere in a ver-
tical pipe, the inertial migration of a sphere in circular Poiseuille flow, the behavior of a neutrally-buoyant
sphere in Couette flow, and the rotation of a prolate spheroid in Couette flow. The new DF/FD method is
shown to be equally accurate as the DLM/FD method. Due to the use of the collocation-point approach
for the rigidity constraint and the integration over the particle domain, the Lagrangian nodes should be
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retracted a little from the particle boundary. In addition, it is shown that there is no significant difference
between the unsteady sedimentation results obtained with and without rotation of the Lagrangian nodes.

Unlike the DF/IB method for the particulate flows proposed by Uhlmann [11], our body-force is distrib-
uted over the particle inner domain for the rigid-body motion constraint in order to overcome the difficulty in
dealing with the nearly neutrally-buoyant case. However, for the case of large qr, the body-force being located
only on the surface might be a better choice, since fewer Lagrangian nodes are required.

Only the motion of one particle is considered for the validation of the method. The reader is referred to
[7,21,22] for the collision model and successful applications of our DLM/FD method in the many-particle
case.
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